Abstract

This paper presents a mathematical model for optimal design of a solar-assisted drying system for drying bananas. The optimization model consists of a simulation model of a solar-assisted drying system combined with an economic model. The simulation model is composed of two systems of differential equations: one for the collector and other for the drying cabinet. These systems of the differential equation were solved using the finite difference method. Values of the model parameters were determined experimentally. A computer program in FORTRAN was developed to simulate the performance of the drying system. The model was validated by comparing the simulation results with the experimental results and they were in good agreement. This simulation model was used for the optimization of the solar-assisted drying system. An economic model was formulated to calculate the annual drying cost. The optimization problem was defined as the optimization of the geometry and operational parameters of the drying system so as to minimize the drying cost per unit of dried product. Currently used collector area and the air recycle factor were considered as the parameters for basic mode of operation of the drying system. The adaptive pattern search technique was adopted to find the optimum values of the solar collector area and the recycle factor. The optimum values of the collector area and the recycle factor were found to be 26 m 2 and 90%, respectively. The computer program developed in this study can be used to optimize similar drying systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call