Abstract

An automated optimization method based on multipoint approximations and applied to the design of a sheet metal forming process is presented. Due to the highly complex nature of the design functions, it was decided to focus on the characterization of the final product thickness distribution as a function of the preforming die shape variables. This was achieved by constructing linear approximations to the noisy responses usingresponse surface methodology (RSM). These approximations are used to obtain an approximate solution to an optimization problem. Successive approximations are constructed, which improve the solution. An automated panning-zooming scheme is used to resize and position the successive regions of approximation. The methodology is applied to optimally design the preforming die shape used in the manufacture of an automotive wheel centre pressing from a sheet metal blank. The die shape is based on a cubic spline interpolation and the objective is to minimize the blank weight, subject to minimum thickness constraints. A weight saving of up to 9.4% could be realized for four shape variables. Restart is introduced to escape local minima due to the presence of noise and to accelerate the progress of the optimization process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call