Abstract

The coupling between a holographic resin, combining multiple monomers and additives, with photoinitiating systems (PIS) is not straightforward. In this paper, a classic PIS based on Safranine O (SFH+) as dye, an amine (ethyl-4-(dimethylamino)benzoate) as electron donor, and a triazine derivative (2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-1,3,5-triazine) as electron acceptor for holographic recording was studied using time-resolved spectroscopic experiments. By taking into account the viscosity of the matrix, a method to evaluate the overall quantum yield of radicals released is proposed and the contribution of singlet and triplet excited states of SFH+ in the formation of radicals is evaluated. Then the corresponding photopolymerization efficiencies of the PIS, studied by real-time FTIR, are compared with holographic recording experiments: this system allows the formation of a hologram with high diffraction efficiency (0.9) in 3 s of irradiation time. It is shown that besides holographic resin formulation, the photochemistry of PIS also impacts the hologram formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.