Abstract

This paper presents a CFD (Computational Fluid Dynamic) study and experimental results concerning a rotating twin wire-arc spray process for the production of coatings on engine cylinder bores. In this process, the wire atomization is performed using a gas injection coaxially with the cylinder axis. The thermal spray tool is equipped with a deviation head rotating around the cylinder axis and allowing deflecting the droplet spray perpendicularly to the cylinder surface. The initial deviation head was found to be not sufficiently efficient so that a new deviation head incorporating an inclined slot was designed and used. Both CFD results and experiments showed that this new deviation head is more efficient. Moreover, it allowed increasing the coating bond-strength up to the specifications imposed by PSA Peugeot-Citroen. The present article shows that the wire-arc spray technology may replace efficiently the Atmospheric Plasma Spray (APS) for the thermal spray of coatings on engine cylinder bores. Moreover, it shows how CFD may help in solving industrial problems. In particular, the FLUENT CFD code was used in order to perform improvements of the deviation head design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.