Abstract
This contribution is concerned with the energy optimal process design for ethylene glycol synthesis. A systematic approach is developed based on the optimization of a general network model. A rigorous non-isothermal model for different network constituents is derived. These constituents are a two-phase reactor condenser element and several mixer/splitters with which the elements are connected to form the network superstructure. As one special case the resulting superstructure includes a process scheme commonly used in industries where reaction and separation are carried out in different devices. A second special case is a reactive distillation column recently proposed in literature. The general reactor network model is optimized by nonlinear programming (NLP) methods in order to obtain an energy minimal network configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.