Abstract

This work presents a reactive distillation column for the catalytic disproportionation of trichlorosilane to silane which includes three consecutive reversible reactions. This reaction system is however characterized by a large distinction in the boiling points of the components, which make the reactive distillation extremely favored. Nevertheless, the normal reactive distillation column possesses the shortage of high refrigeration requirement. By removing heat at temperature higher than that at the condenser a superstructure representation, rigorous simulations, and optimization problems were combined to derive optimal reactive distillation columns which can realize heat integration between stages and utilities at several refrigeration conditions. An iterative simulation-optimization procedure was proposed to consider temperature changes in stages due to heat integration. The results showed that the installation of two inter-condensers results in the best option with economic savings up to 56%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.