Abstract
Hybrid system based on photovoltaic is considered an effective option to electrify remote and isolated areas far from grid. This is true for areas that receive high averages of solar radiation annually. Using microturbine as a standby source will make utilization of hybrid systems more attractive. A sizing optimization of the hybrid system components, an economic feasibility study and a complete design of the hybrid system consisting of photovoltaic (PV) panels, a microturbine as a backup power source and a battery system supplying a small community in a tropical climate area were presented in this paper. A scenario depending on PV standalone and another scenario depending on microturbine alone were also studied and analyzed in this paper. This is to select the most appropriate considering cost and pollutant emissions for these areas. A simulation program depending on an iterative approach was used to optimize the sizes of PV system and battery bank. Specifications of the hybrid system components are then determined according to the optimized values. Solar radiation data is firstly analyzed and the tilted angle of the PV panels is also optimized. It is found that electrifying rural small community using this hybrid system is very beneficial and competitive with other types of conventional sources as it decreases both operating costs and pollutant emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.