Abstract
The robotic fish utilizes a bio-inspired undulatory propulsion system to achieve high swimming performance. However, significant roll motion has been observed at the head when the tail oscillates at certain frequencies, adversely affecting both perception accuracy and propulsion efficiency. In this paper, the roll torque acting on the robotic fish is theoretically analyzed and decomposed into gravitational, inertial, and hydrodynamic components. Resonance is identified as a key factor amplifying the roll response. To mitigate this roll and enhance stability, a passive roll absorber based on tuned mass damper is designed. A simplified rolling structure is dynamically modeled to optimize absorber parameters. Experiments are conducted to quantify the roll torque experienced by the robotic fish, with the effectiveness of the absorber verified on both the simplified model and the robotic fish. Results show that the maximum roll angle of the simplified system under harmonic load decreases from 98° to29∘, representing a reduction of over 70%, while a 25.1% reduction is achieved on the robotic fish.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.