Abstract

We regard the global climate system as a controlled dynamic system, with controls corresponding to economic activities causing emissions of greenhouse gases. Previous optimization studies for climate change have used descriptions of the environmental system which are found to be too unrepresentative of what is known in the scientific community. In this paper an approach is applied which tries to include a more sophisticated model of the environmental system. The resulting continuous dynamic control problem is solved by the application of a set of non-linear optimization techniques to find optimal response strategies to maximize the discounted sum of future consumption while adhering to certain environmental constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.