Abstract

Full-film double-ridge furrow sowing technology (FDRFST) and nitrogen (N) management are crucial for sustainable agricultural development. To investigate the N fertilizer application scheme for spring maize with high yield, precipitation water productivity (PWP), and N use efficiency (NUE) under the FDRFST, a two-year field experiment was carried out in a rainfed area of Longzhong (LZ). Treatments included two types of N fertilization (common urea [U] and controlled release urea [CU]), three application rates (180, 225, and 270 kg hm−2), and the conditions of no N fertilizer application and no plastic film mulching. The results showed that the temperature-increase effect of PM on the soil between 2021 and 2022 was concentrated for 0–90 days, with average values of the 5 cm soil temperature increasing by 4.15 and 3.58 ºC, respectively. However, the N fertilizer application rate had negligible effects on soil temperature. Plastic film mulching (PM) required temperature-increase compensation, particularly during the sowing–emergence stage, with a 1.68 compensation coefficient. Based on the simulation results of the modified DNDC model, the recommended application rate of CU (180 kg hm−2) for spring maize in LZ increased the average yield, PWP, and NUE by 15.8%, 16.0%, and 36.4% from 1981 to 2020, respectively, compared to U treatments. Our results provide a theoretical basis for N management in spring maize production in LZ and offer critical insights for improving the DNDC model under PM conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.