Abstract
A new reactive force field based on the ReaxFF formalism is effectively parametrized against an extended training set of quantum chemistry data (containing more than 120 different structures) to describe accurately silver and silver-thiolate systems. The results obtained with this novel representation demonstrate that the novel ReaxFF paradigm is a powerful methodology to reproduce more appropriately average geometric and energetic properties of metal clusters and slabs when compared to the earlier ReaxFF parametrizations dealing with silver and gold. ReaxFF cannot describe adequately specific geometrical features such as the observed shorter distances between the under-coordinated atoms at the cluster edges. Geometric and energetic properties of thiolates adsorbed on a silver Ag20 pyramid are correctly represented by the new ReaxFF and compared with results for gold. The simulation of self-assembled monolayers of thiolates on a silver (111) surface does not indicate the formation of staples in contrast to the results for gold-thiolate systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.