Abstract

This work aims at studying the optimization of an on-line capillary electrophoresis (CE)-based tryptic digestion methodology for the analysis of therapeutic polypeptides (PP). With this methodology, a mixture of surrogate peptide fragments and amino acid were produced on-line by trypsin cleavage (enzymatic digestion) and subsequently analyzed using the same capillary. The resulting automation of all steps such as injection, mixing, incubation, separation and detection minimizes the possible errors and saves experimental time. In this paper, we first study the differents parameters influencing PP cleavage inside the capillary (plug length, reactant concentration, incubation time, diffusion and electrophoretic plugs mixing). In a second part, the optimization of the electrophoretic separation conditions of generated hydrolysis products (nature, pH and ionic strength (I) of the background electrolyte (BGE)) is described. Using the optimized conditions, excellent repeatability was obtained in terms of separation (migration times) and proteolysis (number of products from enzymatic hydrolysis and corresponding amounts) demonstrating the robustness of the proposed methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call