Abstract

The purpose of this study is to understand the optimum operating condition of magnetic refrigerator at room temperature for direct air-cooling. The basic components of the target system are a magnetic circuit including two permanent magnets, a test section, an air blower, and an associated instrumentation. The test section consists of 10 test cells which enclose gadolinium chips as a magnetic working substance in a prescribed packing rate. In order to change the applied magnetic field from 0 to 0.9 T, the magnetic circuit is installed on an electric slider which generates reciprocating motion. The system performances are widely investigated both experimentally and analytically for the variety of conditions such as a volumetric flow rate of air, a packing length of magnetic working substance, and a heat exchange cycle. The results reveal that the present magnetic refrigerator has a maximum value of the cooling rate in an appropriate operating condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call