Abstract
The Laboratory for Applied Superconductivity of the Federal University of Rio de Janeiro (LASUP) has been developing a superconducting magnetic levitation urban train named MagLev-Cobra. It is a kind of light rail vehicle where the conventional wheel-rail track is substituted by a rail of Ne-Fe-B magnets and carbon steel interacting with superconductor bulks installed in the vehicle to promote levitation. The main cost of this levitation system is the magnetic rail. Therefore, any improvement in the shape and configuration of magnets and iron has a significant budgetary impact. In this paper, the optimizations carried out with the feasible direction interior point algorithm, extensive search, and genetic algorithm of magnetic rails are presented. The objective is to find the geometry that minimizes the total cost, for a given levitation force, considering some practical restrictions. The levitation force restriction is calculated using a finite-element method. During the optimization process, the superconductor null permeability model is used. Finally, the results are checked with the Bean model and verified experimentally. Measurements of the levitation force and the field mapped over the magnetic rails are presented. Significant reduction of soft and hard ferromagnetic materials was reached.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.