Abstract

The aim of this paper is to develop a method for optimizing the design of a spring valve system by reducing the aeration and cavitation effect which negatively influences the performance of a shock absorber. A fluid-structure interaction (FSI) model is used in order to modify the geometry of the valve interior and, in turn, to achieve better performance in shock absorbers. The paper analyzes the pressure distribution along the flow paths inside the valve cavity to reduce the risk of aeration and cavitation, while other important engineering aspects are omitted, e.g. durability of disc-spring valve systems as discussed in [1]. The objective of this work is to show key steps of the simulation process focusing on interactions between fluid and structure domain and to review relevant simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call