Abstract
The current study aims to understand the aero-thermal performance of a cooled cavity tip in a single stage transonic turbine. The squealer tip of the uncooled turbine blade was reduced to an aerodynamic loss with suppressing leakage flow. However, the aerodynamic loss study of the cooled turbine blade tip is rare. It is necessary to study the tip cavity of the cooled turbine blade. Depth, front blend radius and aft blend radius of the cavity were set as design variables, and 30 cases were chosen using design of experiments. These cases were calculated with conjugate heat transfer method. Approximation model was made using the Kriging method, and tip cavity shape was optimized with multidisciplinary design optimization. Average total pressure loss behind the trailing edge and cooling effectiveness of blade tip surface were set to the objective function. The aerodynamic optimization model decreased 1.6 % of total pressure loss, the heat transfer optimization model increased 1.3 % point of cooling effectiveness and aero-thermal optimization model were found. Volume of tip cavity becomes larger when three design variables are grown. Amount of tip leakage flow and its distribution over the tip region increases and total pressure loss and cooling effectiveness increase. In terms of heat transfer, blade tip without cavity is advantageous. Total pressure loss coefficient, however, also increases over 5 %. To improve both aero-thermal characteristics of cooled blade tip, the design using the multidisciplinary design optimization is recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.