Abstract

A typical Geiger-mode avalanche photodiode (G-APD) contains a guard ring that protects the structure from having an edge breakdown due to the lowering of electric fields at junction curvatures. In this contribution, G-APDs with a virtual guard ring (vGR) merged with n-type diffused guard ring (nGR) in various sizes were studied to find the optimal design for G-APDs fabricated at National NanoFab Center (NNFC) . The sensors were fabricated via a customized CMOS process with a micro-cell size of 65× 65 μm2 on a 200 mm p-type epitaxial layer wafer. I-V characteristic curves for proposed structures were measured on a wafer-level with an auto probing system and plotted together to compare their performance. A vGR width of 1.5 μm and a nGR width of 1.5 μm with an overlapping between vGR and nGR of 1.5 μm showed the lowest leakage current before the breakdown voltage while suppressing the edge breakdown. Furthermore, the current level of the lowest-leakage-current structure was as low as that of only vGR with a width of 2.0 μm, indicating that the structure is also area efficient. Based on these results, the design with vGR, nGR, and OL with width of 1.5 μm is determined to be the optimal structure for G-APDs fabricated at NNFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.