Abstract

Design modifications are presented for a 289-mm long, 25.4-mm inner diameter blackbody heater element of a 48 kW Thermogage blackbody furnace, based on (i) cutting a small “heater zone” into the ends of the tube and (ii) using a mixture of He and Ar or N2 to “tune” the heat losses and, hence, gradients in the furnace. A simple numerical model for the heater tube is used to model and optimize these design changes, and experimental measurements of the modified temperature profile are presented. The convenience of the Thermogage graphite-tube furnace, commonly used in many NMIs as a blackbody source for radiation–thermometer calibration and as a spectral irradiance standard, is limited by its effective emissivity, typically between 99.5% and 99.9%. The design simplicity of the furnace is that the blackbody cavity, heater, and electrical and mechanical connections are achieved through a single piece of machined graphite. As the heater also performs a mechanical function, the required material thickness leads to significant axial heat flux and resulting temperature gradients. For operation at a single temperature, changes to the tube profile could be used to optimize the gradient. However, it is desired to use the furnace over a wide temperature range (1,000–2,900°C), and the temperature-dependence of the electrical conductivity and thermal conductivity, and that of the insulation, makes this approach much more complex; for example, insulation losses are proportional to T4, whereas conduction losses are proportional to T. In the results presented here, a slightly thinner graphite region near each end of the tube was used to “inject heat” to compensate for the axial conduction losses, and the depth, width, and position of this region was adjusted to achieve a compromise in performance over a wide temperature range. To assist with this optimization, the insulation purging gas was changed from N2 to He at the lower temperatures to change the thermal conductivity of the felt insulation, and the effectiveness of this approach has been experimentally confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.