Abstract

Intravesical instillation of a poloxamer 407 (PLX)-based hydrogel offers advantages such as thermo-sensitivity and sol-to-gel transition, but its utility is limited by urinary obstruction and insufficient bladder residence time. To overcome these obstacles, a floating PLX-hydrogel (FPH) was developed using sodium bicarbonate (BC) as a floating agent and hyaluronic acid (HA) as a gel strength modulator. The FPH composition was optimized using the Box-Behnken design with three independent variables: X1 [PLX concentration, 23.91%], X2 [BC concentration, 5.15%], and X3 [HA concentration, 3.49%]. The quadratic model was the best fit (desirability function, 0.623), resulting in response parameters of Y1 [floating time, 53.7 s], Y2 [gelation temperature gap, 20.3°C], and Y3 [duration time of gel, 396.7 min]. Rheological observations revealed the mechanical rigidity (storage modulus > loss modulus at elevated temperature) of the optimized FPH (phase transition temperature, 15.08°C). Gel erosion and drug release studies were performed using the gravimetric method; the remaining FPH fraction decreased exponentially with time, and gemcitabine release was biphasic and surface erosion-controlled. In vivo buoyancy was evaluated in rats using ultrasonography; these results were similar to those of the in vitro floating behavior. Thus, optimized FPH for intravesical instillation is a prospective option for bladder cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.