Abstract

Several studies have shown that a surface dielectric barrier discharge (DBD) may be used as an electrohydrodynamic (EHD) actuator in order to control airflows. In this paper, a parametric study has been performed in order to increase the velocity of the ionic wind induced by such actuators. The results show that an optimization of geometrical and electrical parameters allows us to obtain a time-averaged ionic wind velocity up to 8 m/s at 0.5 mm from the wall. Moreover, non-stationary measurements of the induced wind have been performed with synchronized records of current and voltage signals. These experiments show that the DBD actuator seems to generate a pulsed velocity at the same frequency than the applied high voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call