Abstract

Maxillofacial bone defect repair and regeneration remains a tremendous challenge in the field of stomatology. However, the limited osteoinductivity of artificial materials and the high cost of bioactive agents restrain their clinical translation. This study aimed to construct an economical and efficient concentrated growth factor/mesoporous bioactive glass (CGF/MBG) composite scaffold for bone regeneration. The biochemical composition and biological effects of different forms of CGFs were systematically compared, and the results showed that CGF-conditioned medium effectively promoted proliferation, migration and osteogenesis of allogenic BMSCs. Gel phase CGF (gpCGF) exhibited superior bioactivity and osteoinductivity to liquid phase CGF (lpCGF) and liquid/gel mixed phase CGF (lgpCGF), and was further applied to construct CGF/MBG scaffolds. In vitro studies demonstrated that co-culture with gpCGF-conditioned medium further enhanced the biocompatibility of MBG, increasing cell adhesion and proliferation on the scaffold. On this basis, two compositing approaches to construct the scaffold by fibrin gel formation (CGF/FG/MBG) and freeze-drying (fdCGF/MBG) were applied, and the biological efficacy of CGFs was compared in vivo. In a rabbit mandibular defect model, higher osteogenic efficiency in in situ bone regeneration of CGF/FG/MBG composite scaffolds was proved, compared with fdCGF/MBG. Taken together, the CGF/FG/MBG composite scaffold is expected to be an efficient bone repairing therapy for clinical translation, and the CGF-composited scaffold using gpCGF and the fibrin gel formation method is a promising way to enhance the bioactivity and osteoinductivity of current clinical bone repairing materials, providing new thoughts on the development of future orthopedic biomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call