Abstract

We propose an airborne collapse capacitive micromachined ultrasonic transducer (CMUT) as a practical viable ultrasound transducer capable of providing a stable performance at the off-resonance frequencies. Traditional practice is to bias the CMUT plate close to collapse voltage to achieve high coupling coefficient and sense the incoming ultrasound as an open-circuit receive voltage signal of the transducer or short-circuit receive current (SCRC). Maintaining CMUT plate in the vicinity of collapse threshold is rather difficult. In this paper, an analytic approach to design an airborne collapsed-mode CMUT for maximum off-resonance sensitivity is presented. We use small-signal circuit model to evaluate the performance of a collapsed CMUT for varying operating conditions. CMUT operational parameters that yield the highest off-resonance SCRC are directly obtained from performance design curves. Collapsed CMUT plate is then biased in a critical biasing region that produces a stable and maximum off-resonance sensitivity. We experimentally verify and measure a stable sensitivity of a fabricated collapsed CMUT cell of −60 dB V/Pa at 100 kHz when biased between 50 to 65 V. We characterize our linear circuit model performance against the measured performance of collapsed CMUT in air within 4-dB tolerance. [2018-0058]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.