Abstract

BackgroundThe Bayesian penalized likelihood (BPL) algorithm Q.Clear (GE Healthcare) allows fully convergent iterative reconstruction that results in better image quality and quantitative accuracy, while limiting image noise. The present study aimed to optimize BPL reconstruction parameters for 18F-NaF PET/CT images and to determine the feasibility of 18F-NaF PET/CT image acquisition over shorter durations in clinical practice.MethodsA custom-designed thoracic spine phantom consisting of several inserts, soft tissue, normal spine, and metastatic bone tumor, was scanned using a Discovery MI PET/CT scanner (GE Healthcare). The phantom allows optional adjustment of activity distribution, tumor size, and attenuation. We reconstructed PET images using OSEM + PSF + TOF (2 iterations, 17 subsets, and a 4-mm Gaussian filter), BPL + TOF (β = 200 to 700), and scan durations of 30–120 s. Signal-to-noise ratios (SNR), contrast, and coefficients of variance (CV) as image quality indicators were calculated, whereas the quantitative measures were recovery coefficients (RC) and RC linearity over a range of activity. We retrospectively analyzed images from five persons without bone metastases (male, n = 1; female, n = 4), then standardized uptake values (SUV), CV, and SNR at the 4th, 5th, and 6th thoracic vertebra were calculated in BPL + TOF (β = 400) images.ResultsThe optimal reconstruction parameter of the BPL was β = 400 when images were acquired at 120 s/bed. At 90 s/bed, the BPL with a β value of 400 yielded 24% and 18% higher SNR and contrast, respectively, than OSEM (2 iterations; 120 s acquisitions). The BPL was superior to OSEM in terms of RC and the RC linearity over a range of activity, regardless of scan duration. The SUVmax were lower in BPL, than in OSEM. The CV and vertebral SNR in BPL were superior to those in OSEM.ConclusionsThe optimal reconstruction parameters of 18F-NaF PET/CT images acquired over different durations were determined. The BPL can reduce PET acquisition to 90 s/bed in 18F-NaF PET/CT imaging. Our results suggest that BPL (β = 400) on SiPM-based TOF PET/CT scanner maintained high image quality and quantitative accuracy even for shorter acquisition durations.

Highlights

  • Positron emission tomography/computed tomography (PET/CT) with 18F-sodium fluoride (18F-NaF) is clinically applied to detect bone metastases derived from a wide range of primary tumors [1,2,3]. 18F-NaF PET/CT is more sensitive, specific, and diagnostically accurate than traditional bone planar imaging and single-photon emission computed tomography (SPECT) using 99mTc-labeled phosphate compounds [4, 5]

  • The optimal reconstruction parameters of 18F-NaF PET/CT images acquired over different durations were determined

  • Our results suggest that Bayesian penalized likelihood (BPL) (β = 400) on Silicon photomultipliers (SiPMs)-based TOF PET/CT scanner maintained high image quality and quantitative accuracy even for shorter acquisition durations

Read more

Summary

Introduction

Positron emission tomography/computed tomography (PET/CT) with 18F-sodium fluoride (18F-NaF) is clinically applied to detect bone metastases derived from a wide range of primary tumors [1,2,3]. 18F-NaF PET/CT is more sensitive, specific, and diagnostically accurate than traditional bone planar imaging and single-photon emission computed tomography (SPECT) using 99mTc-labeled phosphate compounds [4, 5]. Positron emission tomography/computed tomography (PET/CT) with 18F-sodium fluoride (18F-NaF) is clinically applied to detect bone metastases derived from a wide range of primary tumors [1,2,3]. 18F-NaF PET/CT is more sensitive, specific, and diagnostically accurate than traditional bone planar imaging and single-photon emission computed tomography (SPECT) using 99mTc-labeled phosphate compounds [4, 5]. Optimum image acquisition and reconstruction parameters in terms of 18F-NaF PET/ CT imaging have not been described in detail. The reconstruction parameters of 18FNaF PET/CT should be optimized for rapid image acquisition because image quality and quantitative accuracy depend on the amount and type of injected radiotracer activity and image reconstruction. The present study aimed to optimize BPL reconstruction parameters for 18F-NaF PET/CT images and to determine the feasibility of 18F-NaF PET/CT image acquisition over shorter durations in clinical practice

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.