Abstract

The optimization of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly that possess a labile stereocenter at C3 is described. Quaternization of the C3 position of compound 1 in order to prevent racemization gave compound 2, which was inactive in our capsid disassembly assay. A likely explanation for this finding was revealed by in silico analysis predicting a dramatic increase in energy of the bioactive conformation upon quaternization of the C3 position. Replacement of the C3 of the diazepine ring with a nitrogen atom to give the 1,5-dihydro-benzo[f][1,3,5]triazepine-2,4-dione analog 4 was well tolerated. Introduction of a rigid spirocyclic system at the C3 position gave configurationally stable 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione analog 5, which was able to access the bioactive conformation without a severe energetic penalty and inhibit capsid assembly. Preliminary structure–activity relationships (SAR) and X-ray crystallographic data show that knowledge from the 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly can be transferred to these new scaffolds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call