Abstract

Wastewater from chemical plants that produce pesticides always carries a large amount of organic matter that is difficult to decompose. One of them is the compound 4-chlorophenol, which has difficult-to-decompose properties, is durable in the environment, and is also listed in the group of substances that are likely to cause cancer in humans. In this study, the 4-chlorophenol compound was treated with heterogeneous Fenton by H2O2 activated by magnetic iron oxide nanoparticles on activated carbon. Magnetic iron oxide nanoparticles were successfully synthesized and mounted on activated carbon 10-15 nm in size with material surface morphological parameters such as specific surface area 330.28 cm2/g; total pore volume 0.16 cm3/g; magnetization 8.19 emu/g. The optimization of the 4-chlorophenols decomposition reaction with pH parameters, the content of catalytic materials, and the initial concentration of 4-chlorophenol is carried out using the Box-Behnken Design. The results showed that the removal efficiency of 4-chlorophenol was 96.5% achieved with optimum parameters pH 2.9; catalytic concentration 0.32 g/L; initial concentration of 4-chlorophenol 92.3 mg/L. The results of the study show the efficiency of the decomposition of an organic compound using magnetic activated carbon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.