Abstract

The stress concentration and deformation of the 3D stacked IC structures can be minimized with an optimal design of the integrated circuit (IC) using a response surface methodology. The geometrical and process parameters (i.e., A = inlet pressure, B = solder bump standoff height, C = chip thickness, and D = aspect ratio) were optimized via a central composite design (CCD) for the molded encapsulation process. The fluid/structure interaction (FSI) aspects were considered in the optimization of the molded encapsulation process. The separate effects of the independent variables and their interactions were studied. The calculated empirical models were carried out and well validated with the simulation results. The optimum geometrical and process parameters of the 3D stacked IC package with perimeter solder bump arrangement were characterized as follows: inlet condition of 3.65 MPa, 150 μm of solder bump standoff height, 250 μm of chip thickness, and 2.1 of aspect ratio. The outcomes herein may significantly contribute to the advancement of microelectronic industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.