Abstract

Variations of physical and chemical characteristics of biomass lead to an uneven flow of biomass in a biorefinery, which reduces equipment utilization and increases operational costs. Uncertainty of biomass supply and high processing costs increase the risk of investing in the US’s cellulosic biofuel industry. We propose a stochastic programming model to streamline processes within a biorefinery. A chance constraint models system’s reliability requirement that the reactor is operating at a high utilization rate given uncertain biomass moisture content, particle size distribution, and equipment failure. The model identifies operating conditions of equipment and inventory level to maintain a continuous flow of biomass to the reactor. The sample average approximation method approximates the chance constraint and a bisection search-based heuristic solves this approximation. A case study is developed using real-life data collected at Idaho National Laboratory’s biomass processing facility. An extensive computational analysis indicates that sequencing of biomass bales based on moisture level, increasing storage capacity, and managing particle size distribution, increases utilization of the reactor and reduces operational costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.