Abstract

Water dominated gullies formation and associated land degradation are the foremost challenges among the planners for sustainability and optimization of land resources. This type of hazardous phenomenon is utmost vulnerable due to huge loss of surface soil in the sub-tropical developing countries like India. The present study has been carried out in rugged badland topography of Garhbeta-I Community Development (C.D.) Block in eastern India for assessing the gully erosion susceptibility (GES) mapping and optimization of land use planning. The GES mapping is the first and foremost steps towards minimization this adverse affect and attaining sustainable development. In this study we also describe the importance of plantation and alternation of ex-situ tree species with in-situ species for minimizes the erosional activity. To meet our research goal here we used two prediction based machine learning algorithm (MLA) namely random forest (RF) and boosted regression tree (BRT) and one optimization model of Ecogeography based optimization (EBO). The research study also carried out by using a total of 199, in which 139 (70%) and 60 (30%) gully head-cut points were used for training and validation purposes respectively and treated as dependent factors, and twenty gully erosion conditioning factors as independent variables. These models are validated through receiver operating characteristics-area under the curve (ROC-AUC), accuracy (ACC), precision (PRE) and Kappa coefficient index analysis. The validation result showed that EBO model with the highest values of AUC-0.954, ACC-0.85, PRE-0.877 and Kappa-0.646 is the most accurate model for GES followed by BRT and RF. The outcome results should help for the sustainable development of this rugged badland topography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.