Abstract
Abstract— Fuzzy Decision Making involves a process of selecting one or more alternatives or solutions from a finite set of alternatives which suits a set of constraints. In the rule-based expert system, the terms following in the decision making is using knowledge based and the IF Statements of the rule are called the premises, while the THEN part of the rule is called conclusion. Membership function and knowledge based determines the performance of fuzzy rule based expert system. Membership function determines the performance of fuzzy logic as it relates to represent fuzzy set in a computer. Knowledge Based in the other side relates to capturing human cognitive and judgemental processes, such as thinking and reasoning. In this paper, we have proposed a method by using Max-Min Composition combined with Genetic Algorithm for determining membership function of Fuzzy Logic and Schema Mapping Translation for the rules assignment.Keywords— Fuzzy Decision Making, Rule-Based Expert System, Membership Function, Knowledge Based, Max-Min Composition, Schema Mapping Translation
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.