Abstract

Different from conventional gas reservoirs, the permeability of coalbeds is affected by stress sensitivity and matrix shrinkage during production. These two conditions lead to lower permeability in the reservoir and affect the production efficiency of the gas well. In addition, coalbed methane wells have single-phase water flow in the initial stage of production. When the reservoir pressure is reduced to its critical desorption pressure, the adsorbed gas in the reservoir desorbs into the pore space and participates in the flow. The flow state in the reservoir changes from single-phase to two phase, and the permeability of the reservoir decreases. The occurrence of these three damage mechanisms is related to the flow rate of fluid in the reservoir. At present, there is a lack of research on the optimization of drainage and production systems considering the damage mechanism of coal reservoirs. This study comprehensively considers how to optimize the production rate of coal reservoirs under the influence of stress sensitivity, matrix shrinkage and two phase flow in the production process to achieve the purpose of production with the least damage to the reservoir.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.