Abstract

In this paper we study optimal control problems with the control variable appearing linearly. A novel method for optimization with respect to the switching times of controls containing both bang-bang and singular arcs is presented. This method transforms the control problem into a finite-dimensional optimization problem by reformulating the control problem as a multi-stage optimization problem. The optimal control problem is partitioned as several stages, with each stage corresponding to a particular control arc. A control vector parameterization approach is applied to convert the control problem to a static nonlinear programming (NLP) problem. The control profiles and stage lengths act as decision variables. Based on the Pontryagin maximal principle, a multi-stage adjoint system is constructed to calculate the gradients required by the NLP solvers. Two examples are studied to demonstrate the effectiveness of this strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call