Abstract

An atmosphere-breathing electric propulsion system uses the rarefied atmospheric molecules as the propellant for the electric thruster. In the best case, it can allow spacecraft complete a long-time mission in the lower Earth orbit without carrying any propellant. In this article, the intake geometry is designed, analysed and optimized to improve the performance of atmospheric particles capture, including collection efficiency and compression ratio. The orthogonal method is used in the simulation test to analyse the sensitivities of main parameters, including the configuration of grid ducts, the configuration of tapered chamber, the length-to-diameter ratio of tapered chamber and the diameter of tube. The results show that the performance of air-intake can be optimized with different parameter combinations. Compared with different intake designs of previous studies, the optimal design in this article shows the better particle capture performance under the same boundary conditions. The particles compression ratio is over 100, and the collection efficiency can reach 81.08%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.