Abstract

Treatment planning in high dose-rate brachytherapy has traditionally been conducted with manual forward planning, but inverse planning is today increasingly used in clinical practice. There is a large variety of proposed optimization models and algorithms to model and solve the treatment planning problem. Two major parts of inverse treatment planning for which mathematical optimization can be used are the decisions about catheter placement and dwell time distributions. Both these problems as well as integrated approaches are included in this review. The proposed models include linear penalty models, dose-volume models, mean-tail dose models, quadratic penalty models, radiobiological models, and multiobjective models. The aim of this survey is twofold: (i) to give a broad overview over mathematical optimization models used for treatment planning of brachytherapy and (ii) to provide mathematical analyses and comparisons between models. New technologies for brachytherapy treatments and methods for treatment planning are also discussed. Of particular interest for future research is a thorough comparison between optimization models and algorithms on the same dataset, and clinical validation of proposed optimization approaches with respect to patient outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.