Abstract

Robotic manipulators with three-revolute (3R) family of positional configurations are very common in the industrial robots (IRs). The manipulator capability of a robot largely depends on the workspace (WS) of the manipulator apart from other parameters. With the constraints in mind, the optimization of the workspace is of prime importance in designing the manipulator. The workspace of manipulator is formulated as a constrained optimization problem with workspace volume as objective function. It is observed that the previous literature is confined to use of conventional soft computing algorithms only, while a new search modified algorithm is conceptualized and proposed here to improve the computational time. The proposed algorithm gives a good set of geometric parameters of manipulator within the applied constrained limits. The availability of such an algorithm for optimizing the workspace is important, especially for highly constrained environments. The efficiency of the proposed approach to optimize the workspace of 3R manipulators is exhibited through two cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call