Abstract

With the revolution in power generation and the development of electrification, portable electronic gadgets have recently posed escalating needs for suitable energy storage applications. The lithium-ion battery (LIB) is an electrochemical energy storage device that can achieve high energy density while retaining high power density. Here, we build a high energy density LIB module with a ∼12.10% increase in energy density over the previous cell. For environmental and safety reasons, several design elements such as electrode thickness, porosity, current density, and particle size were iterated to improve specific capacity and energy density without changing the ambient temperature increment. We have used a simple heat generation system; the temperature raised by ∼18.96% from the room environment was close to 29.74 °C. The specific capacity was also improved by ∼14.56% as compared to commercial LIB. Besides, we used the gassing and plating methods to reduce the integrated Li-ion loss for both the cathode and anode. All of the remarkable findings in this work will aid in the optimization and design of next-generation LIB cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call