Abstract

Based on the deterministic description of batch culture expressed in form of switched ordinary differential equations, we introduce a switched stochastic counterpart system with initial state difference together with uncertain switching instants and system parameters to model the process of glycerol biodissimilation to 1,3-propanediol (1,3-PD) induced byKlebsiella pneumoniae(K. pneumoniae). Important properties of the stochastic system are discussed. Our aim is to obtain the unified switched instants and system parameters under the condition of different initial states. To do this, we will formulate a system identification problem in which these uncertain switched instants and system parameters are regarded as decision variables to be chosen such that the relative error between experimental data and computational results is minimized. Such problem governed by the stochastic system is subject to continuous state inequality constraints and box constraints. By performing a time-scaling transformation as well as introducing the constraint transcription and local smoothing approximation techniques, we convert such problem into a sequence of approximation subproblems. Considering both the difficulty of finding analytical solutions and the complex nature of these subproblems, we develop a parallelized differential evolution (DE) algorithm to solve these approximation subproblems. From an extensive simulation, we show that the obtained optimal switched instants and system parameters are satisfactory with initial state difference.

Highlights

  • Based on the deterministic description of batch culture expressed in form of switched ordinary differential equations, we introduce a switched stochastic counterpart system with initial state difference together with uncertain switching instants and system parameters to model the process of glycerol biodissimilation to 1,3-propanediol (1,3-PD) induced by Klebsiella pneumoniae (K. pneumoniae)

  • We show that the obtained optimal switched instants and system parameters are satisfactory with initial state difference

  • A switched stochastic counterpart with uncertain switched instants and system parameters will be taken to replace the commonly used deterministic description of batch culture with ordinary differential equations to describe the process of glycerol biodissimilation to 1,3-PD by K. pneumoniae

Read more

Summary

Introduction

Based on the deterministic description of batch culture expressed in form of switched ordinary differential equations, we introduce a switched stochastic counterpart system with initial state difference together with uncertain switching instants and system parameters to model the process of glycerol biodissimilation to 1,3-propanediol (1,3-PD) induced by Klebsiella pneumoniae (K. pneumoniae). A switched stochastic counterpart with uncertain switched instants and system parameters will be taken to replace the commonly used deterministic description of batch culture with ordinary differential equations to describe the process of glycerol biodissimilation to 1,3-PD by K. pneumoniae. In order to estimate the uncertain switched instants and system parameters, we present a system identification problem governed by the stochastic system and subject to continuous state inequality constraints and box constraints to minimize the relative error between experimental data and computational results. It is observed that the obtained optimal switched instants and system parameters are satisfactory with initial state difference via numerical simulations

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call