Abstract

This paper investigates the rotary-wing unmanned aerial vehicle (UAV)-enabled full-duplex wireless-powered Internet-of-Things (IoT) networks, in which a rotary-wing UAV equipped with a full-duplex hybrid access point (HAP) serves multiple sparsely-distributed energy-constrained IoT sensors. The UAV broadcasts energy when flying and hovering, and collects information only when hovering. It is assumed that the transmission range of the UAV is limited and the sensors are sparsely distributed in the IoT network. Under these practical assumptions, we formulate three optimization problems: a sum-throughput maximization (STM) problem, a total-time minimization (TTM) problem, and a total-energy minimization (TEM) problem. For the TEM problem, we further take into consideration that the power needed for hovering, flying, and transmitting are different. For the STM, TTM and TEM problems, optimal solutions are obtained. Finally, numerical results show that the performance achieved by the proposed optimal time allocation schemes outperform existing time allocation schemes. It is also observed that i) the time allocation between hovering and flying time has different trends for different goals; ii) there is an optimal UAV transmit power range that minimizes the energy consumed by the UAV during the entire cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.