Abstract

The participation of power producers who generate electricity from renewable energy resources, e.g., wind and solar, in the electricity market has been significantly promoted by the high penetration of renewable electricity generation. In this case, the unit commitment is required to be formulated and solved to determine the optimal commitment in response to uncertainty existing in renewable electricity generation. To address this problem, a forecasting-first optimization-second approach has been practically applied in that the next-day renewable electricity generation is forecasted first using historical data, and then the unit commitment problem is solved using the forecasted renewable energy generation. However, the forecasting-first optimization-second approach has limitation that forecasting and optimization are decoupled, and thus, forecasting cannot be tuned by reflecting the effect of forecasted renewable energy generation on optimizing unit commitment. Given this context, this study proposes an optimization-driven renewable energy generation forecasting that is designed to integrate the unit commitment problem with the course of regression so that the regression can be done to minimize forecasting error while maximizing profit. Numerical experiments are conducted based on general regression models, e.g., auto-regressive and multiple linear regression models, with various parameter settings, and the results demonstrate that the proposed approach provides better renewable energy forecasting in terms of resulting unit commitment, i.e., greater profit and less penalty, without degrading forecasting accuracy significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.