Abstract

Developing manipulators for kinesthetic haptic interfaces is challenging due to a large number of design parameters. We propose a novel optimization-driven design approach taking into account the properties of the entire workspace of the human arm instead of a specific task. To achieve this, models of both the human arm and the haptic manipulator are derived and deployed in a suitable objective function, which simultaneously considers poses, velocities, accelerations, as well as displayed forces and torques. A detailed analysis and experiments with real-world motion tracking data show that the proposed method is capable of finding meaningful design parameters to enable good haptic transparency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call