Abstract

The ultra-high-precision measurement of the atomic magnetometer is largely restricted by the size of its working magnetic field. In order to reduce the residual magnetic field as much as possible, this article carried out the research on the methods to improve the shielding performance. Firstly, the axial shielding factor that limits the shielding performance of the magnetic shielding barrel was derived with various parameters including the radius, length, thickness, number of layers, distance between adjacent layers, etc. of the magnetic shielding barrel. Secondly, simulation was carried out to verify the correctness of the formula. Simulation shows that the shielding performance of the magnetic shielding barrel decreases with the size of magnetic shielding barrel increase. Besides, with the increase of the distance between two adjacent spacing layers, the shielding performance first increases rapidly and then gradually decreases, indicating that the optimal distance between adjacent layers is 9mm. Especially, the performance of the magnetic shielding barrel improves significantly as the layer thickness and number of layers increase. Experimental results show that the internal remanence of the three-layer magnetic shielding barrel is less than 1nT, and the available axial length of homogeneity range is greater than 200mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call