Abstract

Based on Multi-body system Dynamic theory, front suspension model is established by using ADAMS/Car, and then the validation is finished according to suspension K&C test project. Through the model simulation, the sensitivity of structure parameters to suspension kinematics characteristics has been analyzed and then the most sensnetive ones have been sorted out. The suspension structure geometry parameters are optimized by the application of DOE method based on virtual prototype technology. The parallel travel simulation results are as follows: the values of camber angle, toe angle, kingpin inclination angle, steer angle and lift/dive are reduced, and the values of caster angle are increased slightly with the optimized suspension. Consequently, the optimized suspension is more conducive to vehicle handling stability compared with the original one. This optimization design method provides the technical support for suspension positive development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.