Abstract
Curvilinear stiffener concept has been introduced to aircraft panel structures most recently for possible further weight reduction during optimization design. However, due to enlarged design space and high design complexity, more computational time is needed to optimize curvilinearly stiffened panels. Considering the requirement for both lighter structure and less design time, optimization designs of a unitized panel with stiffeners in three different formats, i.e. curvilinear, oblique, and evenly distributed straight, are conducted under various loading conditions to figure out which stiffener format should be selected in a real design environment. Four single loading cases with different compression-shear ratios and a set of multiple load cases are considered. Evolution strategy with covariance matrix adaption is combined with sequential quadratic programming to seek out the optimum structure with minimum mass taking into account buckling and strength constraints. Comparative analysis of the optimization results indicates that evenly distributed straight format is suitable for compression-dominant loading conditions whereas curvilinear format become superior in case that shear loading is considerable or multiple biaxial compression and shear loads are applied. Besides, curvilinear format adds more design flexibilities to the stiffeners, which enables them to play a more important role in the optimized structures. Furthermore, evolution strategy with covariance matrix adaption is found to be more efficient than particle swarm optimization for this optimization problem. This study can provide a useful guidance for future optimization design of aircraft structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.