Abstract

Abstract To conduct an in-depth study of the injection characteristics of gas fuels, the structural parameters of the nozzle are optimized. Utilizing the Response Surface Method (RSM), this study selects an inlet radius R1 , outlet radius R2 , throat straight radius R0 , expansion half angle θ, and contraction half angle α as design parameters. Based on the validated numerical model, a response surface prediction model for outlet velocity v and mass flow rate Q is established. Using the derived expressions, the contribution and interactive effects of design variables on response variables are analyzed. The findings indicate that the outlet radius and throat radius significantly affect the outlet velocity. The outlet radius positively correlates with the outlet velocity, while the throat radius negatively correlates with it. The mass flow rate is most significantly influenced by the throat radius, increasing with its increase. With outlet velocity and mass flow rate as optimization objectives, the MOGA algorithm is applied for multi-objective optimization. The optimization results indicate that the optimized structural parameters increased the centrifugal nozzle’s atomization cone angle and mass flow rate by 1.86% and 27.4%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.