Abstract

The computation consumption of finite element analysis for structural optimization design of holding pole is large, and it is difficult to determine the feasible region. The response surface method (RSM) was used to simulate the real response of the holding pole, and an improved arithmetic optimization algorithm (IAOA) was proposed to optimize the holding pole. Fractional-order calculus was introduced into arithmetic optimization algorithm (AOA) to improve the exploitation ability of AOA. Latin hypercube sampling was applied to select the test samples of each member of the holding pole, and the least square method was employed to analyze the sample points. Then, the second-order response surface surrogate model of the stress and displacement of the holding pole on the cross-sectional size of each member was established. An optimization model was constructed with the minimum mass as the optimization objective and the allowable stress and displacement as constraints, and the IAOA was implemented to solve the model. The results show that the second-order response surface model can accurately predict the response value of the holding pole. The solution accuracy of the IAOA is significantly improved. The surrogate model can greatly decrease the calculation cost of finite element analysis. The mass of the holding pole is reduced 8.2% after optimization. The RSM and the IAOA can be combined to solve the optimization design problem of large spatial truss structures effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.