Abstract
In this paper, two optimized autofocusing metasurfaces (AFMs) with different desired focal distances are designed by using particle swarm optimization (PSO) algorithm. Based on the finite element simulation software COMSOL Multiphysics, the performance of ultrasound transducer (UT) with AFM at different design parameters in Airy distributions ([Formula: see text]) and the bottom thickness ([Formula: see text]) of AFM are simulated and analyzed. Based on the simulation data, the artificial neural network model is trained to describe the complex relationship between the design parameters of AFM and the performance parameters of UT. Then, the multiobjective optimization function for AFM is determined according to the desired performance parameters of UT, including focal position, lateral resolution, longitudinal resolution and absolute sound pressure. In order to obtain AFMs with the desired performance, PSO algorithm is adopted to optimize the design parameters of AFM according to the multiobjective optimization function, and two AFMs are optimized and fabricated. The experimental results well agree with the simulation and optimization results, and the optimized AFMs can achieve the desired performance. The fabricated AFM can be easily integrated with UT, which has great potential applications in wave field modulation underwater, acoustic tweezers, biomedical imaging, industrial nondestructive testing and neural regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.