Abstract

The ultralight space mirror has long been a hot topic in the research field of space telescopes. In this paper, an ultralight mirror is designed by obtaining the structure and parameters of a mirror with an aperture of 2 m through experimental design and multiobjective integrated optimization. Specifically, the materials near the neutral surface were replaced with elliptical holes. The back of the mirror was supported at three points. Finite-element analysis shows that the mirror had a surface figure error of 10.4 nm under 1 g in the x direction (gravity direction), which is sufficiently high to be applied to visible light optical systems. Further, the eigenfrequencies of mirror components were obtained through finite-element analysis: 70 Hz in the x direction, 70 Hz in the y direction, and 90 Hz in the z direction. The results demonstrate the excellent dynamics performance of the designed mirror. Compared with test results, the relative error of eigenfrequencies was within 4%. Hence, our ultralight design outputs reliable optimization results and applies to the development of large-aperture ultralight space mirrors. Finally, the ultralight mirror was prepared from reaction-bonded silicon carbide. The mass and surface density of the prepared mirror were 105 kg and 34kg/m2, respectively. The mirror mass was 50% lighter than that of the mirrors designed by traditional lightweight methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.