Abstract

Abstract.With the rapid development of modern agriculture facilities, agricultural fans have been widely used due to their low pressure and large airflow characteristics. However, existing agricultural fans have large flow losses and low energy efficiencies. To increase the airflow and energy efficiency of these fans, optimization designs based on skewed and swept blades were carried out. First, a “DDZ” agricultural fan (a leaf model agricultural fan commonly used in China) was chosen as the archetype fan. Its performance curves and flow field distribution were obtained by performance testing and numerical simulation. Second, the stack lines of the skewed blade and swept blade were designed based on the original blade, 3 skewed blade parameters (skewed angle a, x direction control parameter kx, and y direction control parameter ky), and 3 swept blade design parameters (swept angle ß, z direction control parameter kz, and r direction control parameter kr). Finally, the optimal skewed blade design parameters (a = 16.8°, kx = 1.65, and ky = 0.5) and optimal swept blade design parameters (ß = 10.6°, kz = -0.33, and kr =0.6) were obtained using numerical simulations and orthogonal testing, which is a response surface method. The numerical simulation results showed that the airflow and energy efficiency ratios of the optimal skewed blade fan were increased by 4.3% and 20.5%, and those of the optimal swept blade fan were increased by 4.5% and 15.4%, respectively, in comparison with those of the original fan. The flow fields showed that the optimal skewed blade mainly reduced the radial flow at the blade root and the leakage flow. The optimal swept blade mainly reduced the leakage flow by changing the distribution of the static pressure on the blade surfaces. Keywords: Agricultural fan, Skewed-Swept blade, Numerical simulation, Optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call