Abstract
This paper describes the optimization solution improving the total quality of the primary mirror supporting type. With the methods of Finite element analysis(FEA), Orthogonal experiment and BP Neural Network, the relationship between the structure parameters in primary mirror supporting type and the deformation of the primary mirror is built. With this relationship and Genetic Algorithm(GA) optimization design, a group of reasonable technology parameters is found that can improve the static stiffness of the primary mirror supporting type so as to reduce the gravity deformation of the primary mirror. The modal analysis and random vibration analysis are also discussed in detail, and the results indicate that the dynamic stiffness of the primary mirror supporting type is also improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.