Abstract

This paper presents the design, fabrication and testing of a solid polymer microneedle. Mechanical behavior of the microneedle was simulated by ANSYS via the results of suffered and strength calculations. The results shows, that the maximum stresses of polymer MNs is far less than 3.183 MPa, which is the allowable pressure needed. Taguchi method was used help in data analysis and prediction of optimum parameter settings, a series of experiments were conducted to verify the impact of embossing temperature, embossing pressure, and embossing time on the microneedle’s quality. According to the result from the Taguchi experiment, S/N ratio is calculated to find the best combination settings for microneedle’s height. The highest value of S/N ratio (54.403) for product height is determined as optimal initial parameter settings, achieved by 130 °C, 11 MPa and 150 s for PMMA microneedle with optimized size of 550 µm height, 250 µm base diameter and 50 µm tip diameter. Embossing temperature and embossing pressure are the significant parameters in the experiment. The proposed method was verified by a set of experiments, the force for insertion as well as the modes of mechanical failure were examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.