Abstract
Microenvironment evaluation of intact tissue for analysis of cell infiltration and spatial organization are essential in understanding the complexity of disease processes. The principle techniques used in the past include immunohistochemistry (IHC) and immunofluorescence (IF) which enable visualization of cells as a snapshot in time using between 1 and 4 markers. Both techniques have shortcomings including difficulty staining poorly antigenic targets and limitations related to cross-species reactivity. IHC is reliable and reproducible, but the nature of the chemistry and reliance on the visible light spectrum allows for only a few markers to be used and makes co-localization challenging. Use of IF broadens potential markers but typically relies on frozen tissue due to the extensive tissue autofluorescence following formalin fixation. Flow cytometry, a technique that enables simultaneous labeling of multiple epitopes, abrogates many of the deficiencies of IF and IHC, however, the need to examine cells as a single cell suspension loses the spatial context of cells discarding important biologic relationships. Multiplex fluorescent immunohistochemistry (mfIHC) bridges these technologies allowing for multi-epitope cellular phenotyping in formalin fixed paraffin embedded (FFPE) tissue while preserving the overall microenvironment architecture and spatial relationship of cells within intact undisrupted tissue. High fluorescent intensity fluorophores that covalently bond to the tissue epitope enables multiple applications of primary antibodies without worry of species specific cross-reactivity by secondary antibodies. Although this technology has been proven to produce reliable and accurate images for the study of disease, the process of creating a useful mfIHC staining strategy can be time consuming and exacting due to extensive optimization and design. In order to make robust images that represent accurate cellular interactions in-situ and to mitigate the optimization period for manual analysis, presented here are methods for slide preparation, optimizing antibodies, multiplex design as well as errors commonly encountered during the staining process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.